Big Data in Health Conference

Big Data in Health Conference

June 29-30, 2017 | Villa Umbra, Loc. Pila, 06132 Perugia, ITALY  |  REGISTER

 

Please take a look at the summary of conclusions from the meeting (by the organizers).

 

Descrizione

I Big Data presentano complessità ancora inesplorate. Le sfide nel campo medico sono rilevanti, ed investono sia l’efficienza di gestione dei dati che la definizione del loro valore.

Una domanda cruciale è come valutare l’impatto attuale e prospettico degli Electronic Health Records o EHRs. Essi rappresentano dati di natura eterogenea, dipendenti dalla fonte generatrice e dai contesti di riferimento. Per esempio, il contesto geografico, o la struttura medica, o l’ambiente tecnologico o altro ancora. I contesti sono definiti da variabili che influenzano le condizioni di salute delle persone. Lo scambio informativo dovuto alla connessione tra variabili ne determina il grado di interoperabilità, e quindi di integrazione.

Ci si interroga circa la possibilità che si stia assistendo con i Big Data alla progressione verso trasformazioni che rivoluzioneranno la salute delle persone o la cura delle malattie, o piuttosto non sia opportuno considerare correzioni di rotta, revisioni di strategie e di metodi, integrazioni da realizzarsi per mezzo di nuove tecnologie. Ci si chiede se le modalità di raccolta dei dati, e la loro assimilazione in sistemi differentemente integrati e richiedenti una moltitudine di metodi di analisi, costituiscano barriere allo sviluppo di sistemi armonizzati, quali i sistemi automatici di supporto alle decisioni cliniche.

I soggetti Istituzionali, Accademici ed Industriali condividono verosimilmente l’idea che maggiori e migliori dati possono solo agevolare le condizioni di salute delle persone. Tuttavia, risolti molti dei vincoli tecnologici e stabilite le sinergie di sistema che ne migliorano il funzionamento, la criticità diviene come sfruttare il potenziale dei Big Data.

 

Description

Big data is pervasive but still presents challenges of unprecedented complexity. Grand challenges in health are particularly relevant because the effectiveness of healthcare systems is systematically questioned, the efficiency needs to be routinely controlled, and the outcomes are heterogeneously measured.

A crucial question is: How to measure the impacts of Electronic Health Records (EHR)? Answering this question is not easy, as there are many ways to assess their relevance, and plenty of examples can be found in the scientific literature.

EHR represent complex, heterogeneous data, whose nature and impacts are context-dependent. Context here may mean, for instance, the environment, the type of health facility, or also the application domain.

Concerning applications, big data offer opportunities to be used in the context of cost-effectiveness analyses, evaluation of policy impacts, and similar topics. Moreover, interest goes to which technology currently in use may establish standards whose value can be assessed in terms of both interoperability between the generated information sources and the desired integrability between the different outsourced evidences.

At present, it seems more realistic to ask whether we are starting to assist a limitless progression towards the natural effects of the announced transformations, or instead some of the strategies enabled by data-driven health need to be questioned or revised.

 

Relevant questions to be addressed by this Research Topic are:

  • Are we working with similar systems, measures, policies, and problems for which it makes sense to use EHR for testing new ideas and models within an interdisciplinary approach?
  • How to collect, assimilate, analyse, and integrate data to avoid a simplistic “reinvention” of healthcare instead of proposing concrete and harmonized advances?

Finally, institutions, academics, and industry share the awareness that successful healthcare depends on having access to the right data at the right time, through effective use of technology for enhanced patient care. However, even after having minimized the constraints determined by digital capabilities and associated costs, and being inspired by better policies, the use of health information to its full potential still needs to be fully exploited.

Contributing papers should address some of the medical and health challenges related to big data, in particular public health informatics for policy development and use of big-data analytics in health systems for improved clinical decision making, enhanced efficiency of care provisions, and policy implementation. Methodological contributions related to predictive modeling and concerning longitudinal studies are welcome.

Villa Umbria

 

Comments are closed